


Promises in JavaScript and React Native: Creation, Usage, and Common Scenarios
Nov 13, 2024 am 12:37 AMHandling asynchronous tasks is essential in JavaScript, especially in environments like React Native where data fetching, animations, and user interactions need to work seamlessly. Promises provide a powerful way to manage asynchronous operations, making code more readable and maintainable. This blog will cover how to create and use promises in JavaScript, with practical examples relevant to React Native.
What is a Promise?
A Promise in JavaScript is an object that represents the eventual completion (or failure) of an asynchronous operation. It allows us to handle asynchronous code in a more synchronous-looking way, avoiding the classic “callback hell.” Promises have three states:
- Pending: The initial state, neither fulfilled nor rejected.
- Fulfilled: The operation completed successfully.
- Rejected: The operation failed.
Creating a Promise
To create a promise, we use the Promise constructor, which takes a single function (the executor function) with two parameters:
- resolve: Call this function to fulfill the promise when the operation completes successfully.
- reject: Call this function to reject the promise if an error occurs.
Example: Creating a Basic Promise
function fetchData() { return new Promise((resolve, reject) => { setTimeout(() => { const success = true; // Simulating success/failure if (success) { resolve({ data: "Sample data fetched" }); } else { reject("Error: Data could not be fetched."); } }, 2000); // Simulate a 2-second delay }); }
In this example:
- We create a promise that simulates fetching data with a setTimeout.
- If the success variable is true, we call resolve() with some data; otherwise, we call reject() with an error message.
Using Promises with .then(), .catch(), and .finally()
Once a promise is created, we can handle its outcome using:
- .then() to handle successful resolutions,
- .catch() to handle errors, and
- .finally() to execute code after the promise settles, regardless of outcome.
Example: Handling a Promise
fetchData() .then((result) => console.log("Data:", result.data)) // Handle success .catch((error) => console.error("Error:", error)) // Handle failure .finally(() => console.log("Fetch attempt completed")); // Finalize
In this example:
- .then() is called if the promise is resolved, printing the data.
- .catch() handles any errors that occur if the promise is rejected.
- .finally() runs regardless of whether the promise is resolved or rejected.
Practical Use Cases for Promises in React Native
1. Fetching Data from an API
In React Native, data fetching is a common asynchronous task that can be efficiently managed with promises.
function fetchData(url) { return fetch(url) .then(response => { if (!response.ok) throw new Error("Network response was not ok"); return response.json(); }) .then(data => console.log("Fetched data:", data)) .catch(error => console.error("Fetch error:", error)); } // Usage fetchData("https://api.example.com/data");
Use Case: Fetching data from REST APIs or other network requests, where we need to handle both successful responses and errors.
2. Using Promises for Sequential Async Operations
Sometimes, one asynchronous task depends on another. Promises make it easy to chain operations in sequence.
function fetchData() { return new Promise((resolve, reject) => { setTimeout(() => { const success = true; // Simulating success/failure if (success) { resolve({ data: "Sample data fetched" }); } else { reject("Error: Data could not be fetched."); } }, 2000); // Simulate a 2-second delay }); }
Use Case: Useful for logging in a user and then fetching profile data based on their identity.
3. Handling Multiple Promises with Promise.all()
If you have multiple independent promises that can be executed in parallel, Promise.all() allows you to wait for all of them to resolve or for any of them to reject.
fetchData() .then((result) => console.log("Data:", result.data)) // Handle success .catch((error) => console.error("Error:", error)) // Handle failure .finally(() => console.log("Fetch attempt completed")); // Finalize
Use Case: Fetching multiple resources concurrently, such as fetching posts and comments from separate API endpoints.
4. Racing Promises with Promise.race()
With Promise.race(), the first promise that settles (resolves or rejects) determines the result. This is helpful when you want to set a timeout for a long-running task.
function fetchData(url) { return fetch(url) .then(response => { if (!response.ok) throw new Error("Network response was not ok"); return response.json(); }) .then(data => console.log("Fetched data:", data)) .catch(error => console.error("Fetch error:", error)); } // Usage fetchData("https://api.example.com/data");
Use Case: Setting a timeout for network requests, so they don’t hang indefinitely if the server is slow or unresponsive.
5. Using Promise.allSettled() to Handle Mixed Outcomes
Promise.allSettled() waits for all promises to settle, regardless of whether they resolve or reject. This is useful when you need the results of all promises, even if some fail.
function authenticateUser() { return new Promise((resolve) => { setTimeout(() => resolve({ userId: 1, name: "John Doe" }), 1000); }); } function fetchUserProfile(user) { return new Promise((resolve) => { setTimeout(() => resolve({ ...user, profile: "Profile data" }), 1000); }); } // Chain promises authenticateUser() .then(user => fetchUserProfile(user)) .then(profile => console.log("User Profile:", profile)) .catch(error => console.error("Error:", error));
Use Case: Useful when executing multiple requests where some may fail, such as fetching optional data sources or making multiple API calls.
Advanced Techniques: Converting Callbacks to Promises
Older codebases or certain libraries might use callbacks instead of promises. You can wrap these callbacks in promises, converting them to modern promise-based functions.
Example: Wrapping a Callback in a Promise
const fetchPosts = fetch("https://api.example.com/posts").then(res => res.json()); const fetchComments = fetch("https://api.example.com/comments").then(res => res.json()); Promise.all([fetchPosts, fetchComments]) .then(([posts, comments]) => { console.log("Posts:", posts); console.log("Comments:", comments); }) .catch(error => console.error("Error fetching data:", error));
Use Case: This technique allows you to work with legacy callback-based code in a promise-friendly way, making it compatible with modern async/await syntax.
Summary
Promises are powerful tools for managing asynchronous operations in JavaScript and React Native. By understanding how to create, use, and handle promises in various scenarios, you can write cleaner and more maintainable code. Here’s a quick recap of common use cases:
- API Requests: Fetching data from a server with error handling.
- Chaining Operations: Executing dependent tasks in sequence.
- Parallel Operations: Running multiple promises concurrently with Promise.all().
- Timeouts and Racing: Limiting request duration with Promise.race().
- Mixed Outcomes: Using Promise.allSettled() for tasks that may partially fail.
- Converting Callbacks: Wrapping callback-based functions in promises for compatibility with modern syntax.
By leveraging promises effectively, you can make asynchronous programming in JavaScript and React Native cleaner, more predictable, and more robust.
The above is the detailed content of Promises in JavaScript and React Native: Creation, Usage, and Common Scenarios. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The following points should be noted when processing dates and time in JavaScript: 1. There are many ways to create Date objects. It is recommended to use ISO format strings to ensure compatibility; 2. Get and set time information can be obtained and set methods, and note that the month starts from 0; 3. Manually formatting dates requires strings, and third-party libraries can also be used; 4. It is recommended to use libraries that support time zones, such as Luxon. Mastering these key points can effectively avoid common mistakes.

PlacingtagsatthebottomofablogpostorwebpageservespracticalpurposesforSEO,userexperience,anddesign.1.IthelpswithSEObyallowingsearchenginestoaccesskeyword-relevanttagswithoutclutteringthemaincontent.2.Itimprovesuserexperiencebykeepingthefocusonthearticl

Event capture and bubble are two stages of event propagation in DOM. Capture is from the top layer to the target element, and bubble is from the target element to the top layer. 1. Event capture is implemented by setting the useCapture parameter of addEventListener to true; 2. Event bubble is the default behavior, useCapture is set to false or omitted; 3. Event propagation can be used to prevent event propagation; 4. Event bubbling supports event delegation to improve dynamic content processing efficiency; 5. Capture can be used to intercept events in advance, such as logging or error processing. Understanding these two phases helps to accurately control the timing and how JavaScript responds to user operations.

If JavaScript applications load slowly and have poor performance, the problem is that the payload is too large. Solutions include: 1. Use code splitting (CodeSplitting), split the large bundle into multiple small files through React.lazy() or build tools, and load it as needed to reduce the first download; 2. Remove unused code (TreeShaking), use the ES6 module mechanism to clear "dead code" to ensure that the introduced libraries support this feature; 3. Compress and merge resource files, enable Gzip/Brotli and Terser to compress JS, reasonably merge files and optimize static resources; 4. Replace heavy-duty dependencies and choose lightweight libraries such as day.js and fetch

The main difference between ES module and CommonJS is the loading method and usage scenario. 1.CommonJS is synchronously loaded, suitable for Node.js server-side environment; 2.ES module is asynchronously loaded, suitable for network environments such as browsers; 3. Syntax, ES module uses import/export and must be located in the top-level scope, while CommonJS uses require/module.exports, which can be called dynamically at runtime; 4.CommonJS is widely used in old versions of Node.js and libraries that rely on it such as Express, while ES modules are suitable for modern front-end frameworks and Node.jsv14; 5. Although it can be mixed, it can easily cause problems.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

To write clean and maintainable JavaScript code, the following four points should be followed: 1. Use clear and consistent naming specifications, variable names are used with nouns such as count, function names are started with verbs such as fetchData(), and class names are used with PascalCase such as UserProfile; 2. Avoid excessively long functions and side effects, each function only does one thing, such as splitting update user information into formatUser, saveUser and renderUser; 3. Use modularity and componentization reasonably, such as splitting the page into UserProfile, UserStats and other widgets in React; 4. Write comments and documents until the time, focusing on explaining the key logic and algorithm selection

The difference between var, let and const is scope, promotion and repeated declarations. 1.var is the function scope, with variable promotion, allowing repeated declarations; 2.let is the block-level scope, with temporary dead zones, and repeated declarations are not allowed; 3.const is also the block-level scope, and must be assigned immediately, and cannot be reassigned, but the internal value of the reference type can be modified. Use const first, use let when changing variables, and avoid using var.
