国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Building a Document Retrieval & Q&A System with OpenAI and Streamlit

Building a Document Retrieval & Q&A System with OpenAI and Streamlit

Nov 07, 2024 pm 03:50 PM

Hello, Dev Community! ?

Today, I’m excited to walk you through my project: EzioDevIo RAG (Retrieval-Augmented Generation). This system allows users to upload PDF documents, ask questions based on their content, and receive real-time answers generated by OpenAI's GPT-3.5 Turbo model. This is particularly useful for navigating large documents or quickly extracting relevant information. ??

Building a Document Retrieval & Q&A System with OpenAI and Streamlit

You can find the complete code on my GitHub: EzioDevIo RAG Project. Let’s dive into the project and break down each step!

? Dive into the full codebase and setup instructions in the EzioDevIo RAG Project GitHub Repository!

Project Overview

What You’ll Learn

  1. How to integrate OpenAI’s language models with PDF document retrieval.
  2. How to create a user-friendly interface using Streamlit.
  3. How to containerize the application with Docker for easy deployment. Project Features
  • Upload PDFs and get information from them.
  • Ask questions based on the content of the uploaded PDFs.
  • Real-time responses generated by OpenAI’s gpt-3.5-turbo model.
  • Easy deployment with Docker for scalability.

*Here’s the final structure of our project directory: *

RAG-project/
├── .env                       # Environment variables (API key)
├── app.py                     # Streamlit app for the RAG system
├── document_loader.py         # Code for loading and processing PDF documents
├── retriever.py               # Code for indexing and retrieving documents
├── main.py                    # Main script for RAG pipeline
├── requirements.txt           # List of required libraries
├── Dockerfile                 # Dockerfile for containerizing the app
├── .gitignore                 # Ignore sensitive and unnecessary files
├── data/
│   └── uploaded_pdfs/         # Folder to store uploaded PDFs
└── images/
    └── openai_api_setup.png   # Example image for OpenAI API setup instructions

Step 1: Setting Up the Project

Prerequisites

Make sure you have the following:

  • Python 3.8 : To run the application locally.
  • OpenAI API Key: You’ll need this to access OpenAI’s models. Sign up at OpenAI API to get your key.
  • Docker: Optional, but recommended for containerizing the application for deployment.

Step 2: Clone the Repository and Set Up the Virtual Environment

2.1. Clone the Repository
Start by cloning the project repository from GitHub and navigating into the project directory.

git clone https://github.com/EzioDEVio/RAG-project.git
cd RAG-project

2.2. Set Up a Virtual Environment
To isolate project dependencies, create and activate a virtual environment. This helps prevent conflicts with other projects’ packages.

python -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`

2.3. Install Dependencies
Install the required Python libraries listed in requirements.txt. This includes OpenAI for the language model, Streamlit for the UI, PyMuPDF for PDF handling, and FAISS for efficient similarity search.

pip install -r requirements.txt

2.4. Configure Your OpenAI API Key
Create a .env file in the project root directory. This file will store your OpenAI API key securely. Add the following line to the file, replacing your_openai_api_key_here with your actual API key:

RAG-project/
├── .env                       # Environment variables (API key)
├── app.py                     # Streamlit app for the RAG system
├── document_loader.py         # Code for loading and processing PDF documents
├── retriever.py               # Code for indexing and retrieving documents
├── main.py                    # Main script for RAG pipeline
├── requirements.txt           # List of required libraries
├── Dockerfile                 # Dockerfile for containerizing the app
├── .gitignore                 # Ignore sensitive and unnecessary files
├── data/
│   └── uploaded_pdfs/         # Folder to store uploaded PDFs
└── images/
    └── openai_api_setup.png   # Example image for OpenAI API setup instructions

? Tip: Make sure .env is added to your .gitignore file to avoid exposing your API key if you push your project to a public repository.

Step 3: Understanding the Project Structure
Here’s a quick overview of the directory structure to help you navigate the code:
Here’s a quick overview of the directory structure to help you navigate the code:

git clone https://github.com/EzioDEVio/RAG-project.git
cd RAG-project

Each file has a specific role:

  • app.py: Manages the Streamlit interface, allowing users to upload files and ask questions.
  • document_loader.py: Handles loading and processing of PDFs using PyMuPDF.
  • retriever.py: Uses FAISS to index document text and retrieve relevant sections based on user queries.
  • main.py: Ties everything together, including calling OpenAI’s API to generate responses.

Step 4: Building the Core Code
Now, let’s dive into the main components of the project.

4.1. Loading Documents (document_loader.py)
The document_loader.py file is responsible for extracting text from PDFs. Here, we use the PyMuPDF library to process each page in the PDF and store the text.

python -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`

Explanation: This function reads all PDF files in a specified folder, extracts the text from each page, and adds the text to a list of dictionaries. Each dictionary represents a document with its text and filename.

4.2. Document Indexing and Retrieval (retriever.py)
FAISS (Facebook AI Similarity Search) helps us to perform similarity searches. We use it to create an index of the document embeddings, which allows us to retrieve relevant sections when users ask questions.

pip install -r requirements.txt

Explanation:

create_index: Converts document text into embeddings using OpenAIEmbeddings and creates an index with FAISS.
retrieve_documents: Searches for relevant document sections based on the user query.

4.3. Generating Responses (main.py)
This module processes user queries, retrieves relevant documents, and generates answers using OpenAI’s language model.

OPENAI_API_KEY=your_openai_api_key_here

Explanation:

generate_response: Creates a prompt with context from retrieved documents and the user’s query, then sends it to OpenAI’s API. The response is then returned as the answer.

Step 5: Creating the Streamlit Interface (app.py)
Streamlit provides an interactive front end, making it easy for users to upload files and ask questions.

RAG-project/
├── .env                       # Environment variables (API key)
├── app.py                     # Streamlit app for the RAG system
├── document_loader.py         # Code for loading and processing PDF documents
├── retriever.py               # Code for indexing and retrieving documents
├── main.py                    # Main script for RAG pipeline
├── requirements.txt           # List of required libraries
├── Dockerfile                 # Dockerfile for containerizing the app
├── .gitignore                 # Ignore sensitive and unnecessary files
├── data/
│   └── uploaded_pdfs/         # Folder to store uploaded PDFs
└── images/
    └── openai_api_setup.png   # Example image for OpenAI API setup instructions

Explanation:

  • This code creates a simple UI with Streamlit, allowing users to upload PDFs and type questions.
  • When users click "Get Answer," the app retrieves relevant documents and generates an answer.

Step 6: Dockerizing the Application
Docker allows you to package the app into a container, making it easy to deploy.

Dockerfile

RAG-project/
├── .env                       # Environment variables (API key)
├── app.py                     # Streamlit app for the RAG system
├── document_loader.py         # Code for loading and processing PDF documents
├── retriever.py               # Code for indexing and retrieving documents
├── main.py                    # Main script for RAG pipeline
├── requirements.txt           # List of required libraries
├── Dockerfile                 # Dockerfile for containerizing the app
├── .gitignore                 # Ignore sensitive and unnecessary files
├── data/
│   └── uploaded_pdfs/         # Folder to store uploaded PDFs
└── images/
    └── openai_api_setup.png   # Example image for OpenAI API setup instructions

Explanation:

We use a multi-stage build to keep the final image lean.
The application runs as a non-root user for security.

Running the Docker Container

  1. Build the Docker Image:
git clone https://github.com/EzioDEVio/RAG-project.git
cd RAG-project

  1. Run the Container:
python -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`

Step 7: Setting Up CI/CD with GitHub Actions
For production readiness, add a CI/CD pipeline to build, test, and scan Docker images. You can find the .github/workflows file in the repository for this setup.

Final Thoughts
This project combines OpenAI’s language model capabilities with document retrieval to create a functional and interactive tool. If you enjoyed this project, please star the GitHub repository and follow me here on Dev Community. Let’s build more amazing projects together! ?

? View the GitHub Repository ? EzioDevIo RAG Project GitHub Repository!

The above is the detailed content of Building a Document Retrieval & Q&A System with OpenAI and Streamlit. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does Python's unittest or pytest framework facilitate automated testing? How does Python's unittest or pytest framework facilitate automated testing? Jun 19, 2025 am 01:10 AM

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

What are dynamic programming techniques, and how do I use them in Python? What are dynamic programming techniques, and how do I use them in Python? Jun 20, 2025 am 12:57 AM

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

How can you implement custom iterators in Python using __iter__ and __next__? How can you implement custom iterators in Python using __iter__ and __next__? Jun 19, 2025 am 01:12 AM

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

What are the emerging trends or future directions in the Python programming language and its ecosystem? What are the emerging trends or future directions in the Python programming language and its ecosystem? Jun 19, 2025 am 01:09 AM

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

How do I perform network programming in Python using sockets? How do I perform network programming in Python using sockets? Jun 20, 2025 am 12:56 AM

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

How do I slice a list in Python? How do I slice a list in Python? Jun 20, 2025 am 12:51 AM

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

See all articles