Algorithms Behind JavaScript Array Methods.
JavaScript arrays come with various built-in methods that allow manipulation and retrieval of data in an array. Here’s a list of array methods extracted from your outline:
- concat()
- join()
- fill()
- includes()
- indexOf()
- reverse()
- sort()
- splice()
- at()
- copyWithin()
- flat()
- Array.from()
- findLastIndex()
- forEach()
- every()
- entries()
- values()
- toReversed() (creates a reversed copy of the array without modifying the original)
- toSorted() (creates a sorted copy of the array without modifying the original)
- toSpliced() (creates a new array with elements added or removed without modifying the original)
- with() (returns a copy of the array with a specific element replaced)
- Array.fromAsync()
- Array.of()
- map()
- flatMap()
- reduce()
- reduceRight()
- some()
- find()
- findIndex()
- findLast()
Let me break down the common algorithms used for each JavaScript array method:
1. concat()
- Algorithm: Linear append/merge
- Time Complexity: O(n) where n is total length of all arrays
- Internally uses iteration to create new array and copy elements
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
2. join()
- Algorithm: Linear traversal with string concatenation
- Time Complexity: O(n)
- Iterates through array elements and builds result string
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
3. fill()
- Algorithm: Linear traversal with assignment
- Time Complexity: O(n)
- Simple iteration with value assignment
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
4. includes()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until element found or end reached
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
5. indexOf()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan from start until match found
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
6. reverse()
- Algorithm: Two-pointer swap
- Time Complexity: O(n/2)
- Swaps elements from start/end moving inward
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
7. sort()
- Algorithm: Typically TimSort (hybrid of merge sort and insertion sort)
- Time Complexity: O(n log n)
- Modern browsers use adaptive sorting algorithms
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
8. splice()
- Algorithm: Linear array modification
- Time Complexity: O(n)
- Shifts elements and modifies array in-place
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
9. at()
- Algorithm: Direct index access
- Time Complexity: O(1)
- Simple array indexing with boundary checking
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
10. copyWithin()
- Algorithm: Block memory copy
- Time Complexity: O(n)
- Internal memory copy and shift operations
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
11. flat()
- Algorithm: Recursive depth-first traversal
- Time Complexity: O(n) for single level, O(d*n) for depth d
- Recursively flattens nested arrays
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
12. Array.from()
- Algorithm: Iteration and copy
- Time Complexity: O(n)
- Creates new array from iterable
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
13. findLastIndex()
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end until match found
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
14. forEach()
- Algorithm: Linear iteration
- Time Complexity: O(n)
- Simple iteration with callback execution
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
15. every()
Algorithm: Short-circuit linear scan
Time Complexity: O(n)
Stops on first false condition
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
16. entries()
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator object
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
17. values()
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator for values
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
18. toReversed()
- Algorithm: Copy with reverse iteration
- Time Complexity: O(n)
- Creates new reversed array
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
19. toSorted()
- Algorithm: Copy then TimSort
- Time Complexity: O(n log n)
- Creates sorted copy using standard sort
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
20. toSpliced()
- Algorithm: Copy with modification
- Time Complexity: O(n)
- Creates modified copy
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
21. with()
- Algorithm: Shallow copy with single modification
- Time Complexity: O(n)
- Creates copy with one element changed
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
22. Array.fromAsync()
- Algorithm: Asynchronous iteration and collection
- Time Complexity: O(n) async operations
- Handles promises and async iterables
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
23. Array.of()
- Algorithm: Direct array creation
- Time Complexity: O(n)
- Creates array from arguments
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
24. map()
- Algorithm: Transform iteration
- Time Complexity: O(n)
- Creates new array with transformed elements
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
25. flatMap()
- Algorithm: Map flatten
- Time Complexity: O(n*m) where m is average mapped array size
- Combines mapping and flattening
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
26. reduce()
- Algorithm: Linear accumulation
- Time Complexity: O(n)
- Sequential accumulation with callback
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
27. reduceRight()
- Algorithm: Reverse linear accumulation
- Time Complexity: O(n)
- Right-to-left accumulation
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
28. some()
- Algorithm: Short-circuit linear scan
- Time Complexity: O(n)
- Stops on first true condition
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
29. find()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until condition met
// every() Array.prototype.myEvery = function(predicate) { for (let i = 0; i < this.length; i++) { if (i in this && !predicate(this[i], i, this)) { return false; } } return true; };
30. findIndex()
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan for matching condition
// entries() Array.prototype.myEntries = function() { let index = 0; const array = this; return { [Symbol.iterator]() { return this; }, next() { if (index < array.length) { return { value: [index, array[index++]], done: false }; } return { done: true }; } }; };
31. findLast()
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
I've provided complete implementations of all 31 array methods you requested.
? Connect with me on LinkedIn:
Let’s dive deeper into the world of software engineering together! I regularly share insights on JavaScript, TypeScript, Node.js, React, Next.js, data structures, algorithms, web development, and much more. Whether you're looking to enhance your skills or collaborate on exciting topics, I’d love to connect and grow with you.
Follow me: Nozibul Islam
The above is the detailed content of Algorithms Behind JavaScript Array Methods. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The following points should be noted when processing dates and time in JavaScript: 1. There are many ways to create Date objects. It is recommended to use ISO format strings to ensure compatibility; 2. Get and set time information can be obtained and set methods, and note that the month starts from 0; 3. Manually formatting dates requires strings, and third-party libraries can also be used; 4. It is recommended to use libraries that support time zones, such as Luxon. Mastering these key points can effectively avoid common mistakes.

PlacingtagsatthebottomofablogpostorwebpageservespracticalpurposesforSEO,userexperience,anddesign.1.IthelpswithSEObyallowingsearchenginestoaccesskeyword-relevanttagswithoutclutteringthemaincontent.2.Itimprovesuserexperiencebykeepingthefocusonthearticl

Event capture and bubble are two stages of event propagation in DOM. Capture is from the top layer to the target element, and bubble is from the target element to the top layer. 1. Event capture is implemented by setting the useCapture parameter of addEventListener to true; 2. Event bubble is the default behavior, useCapture is set to false or omitted; 3. Event propagation can be used to prevent event propagation; 4. Event bubbling supports event delegation to improve dynamic content processing efficiency; 5. Capture can be used to intercept events in advance, such as logging or error processing. Understanding these two phases helps to accurately control the timing and how JavaScript responds to user operations.

If JavaScript applications load slowly and have poor performance, the problem is that the payload is too large. Solutions include: 1. Use code splitting (CodeSplitting), split the large bundle into multiple small files through React.lazy() or build tools, and load it as needed to reduce the first download; 2. Remove unused code (TreeShaking), use the ES6 module mechanism to clear "dead code" to ensure that the introduced libraries support this feature; 3. Compress and merge resource files, enable Gzip/Brotli and Terser to compress JS, reasonably merge files and optimize static resources; 4. Replace heavy-duty dependencies and choose lightweight libraries such as day.js and fetch

The main difference between ES module and CommonJS is the loading method and usage scenario. 1.CommonJS is synchronously loaded, suitable for Node.js server-side environment; 2.ES module is asynchronously loaded, suitable for network environments such as browsers; 3. Syntax, ES module uses import/export and must be located in the top-level scope, while CommonJS uses require/module.exports, which can be called dynamically at runtime; 4.CommonJS is widely used in old versions of Node.js and libraries that rely on it such as Express, while ES modules are suitable for modern front-end frameworks and Node.jsv14; 5. Although it can be mixed, it can easily cause problems.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

To write clean and maintainable JavaScript code, the following four points should be followed: 1. Use clear and consistent naming specifications, variable names are used with nouns such as count, function names are started with verbs such as fetchData(), and class names are used with PascalCase such as UserProfile; 2. Avoid excessively long functions and side effects, each function only does one thing, such as splitting update user information into formatUser, saveUser and renderUser; 3. Use modularity and componentization reasonably, such as splitting the page into UserProfile, UserStats and other widgets in React; 4. Write comments and documents until the time, focusing on explaining the key logic and algorithm selection

The difference between var, let and const is scope, promotion and repeated declarations. 1.var is the function scope, with variable promotion, allowing repeated declarations; 2.let is the block-level scope, with temporary dead zones, and repeated declarations are not allowed; 3.const is also the block-level scope, and must be assigned immediately, and cannot be reassigned, but the internal value of the reference type can be modified. Use const first, use let when changing variables, and avoid using var.
