国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Web Front-end JS Tutorial NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

Nov 03, 2024 am 03:10 AM

Introduction

When web applications grow larger, so does the complexity in developing and maintaining the system. A common way to solve this issue is by using the microservice architecture, where developers break down systems into smaller well-managed components that can be individually managed and scaled.

To do this effectively, it’s often helpful to use a microservice framework. But choosing the right framework that natively supports microservices can be challenging. In this article, we are going to take a look at Encore.ts and Nest.js as the two relevant alternatives, since they both natively support microservices architectures and TypeScript.

Encore.ts is a newer open-source framework that stands out for its high performance, type-safety, and observability features. Nest.js on the other hand leads the TypeScript framework for building Microservices applications. Each of them has something strong to offer, so we will examine each framework in terms of architecture, performance, and scalability and explain how to determine which might work best for you.

Before we begin, let’s look at the benchmark data in the image below:

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

The benchmark data shows that Encore.ts can handle 121,005 requests per second without validation and 107,018 with schema validation. That’s significantly faster than traditional frameworks. For example, Express.js with Zod only hits about 15,707 requests per second without validation and 11,878 with it. So, Encore.ts is roughly 9 times quicker than Express, which Nestjs is built on.

Overview of Encore.ts and NestJS

When you’re starting a project, you want a framework that’s not only powerful but also easy for developers to use. Encore.ts and NestJS stands out when it comes to Microservice frameworks that has built-in support for Typescript, but they work in their own distinct ways.

Encore.ts is an open-source cloud-native framework designed for backend development with built-in infrastructure automation. It allows you to build modular distributed systems using declarative infrastructure libraries.

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

Encore.ts operates on a Rust runtime ****integrated with Node.js via napi for exceptional performance in handling I/O and multithreading while letting you write logic in TypeScript.

Here’s a simple example of how you can define a service in Encore.ts:

import { Service } from "encore.dev/service";

export default new Service("hello");

When this hello service is created, Encore.ts automatically treats the entire directory as part of the service—no extra configuration is needed.

On the other hand, NestJS has its own style. It’s a flexible TypeScript framework that lets you fully control how you build your app, giving you the freedom to structure things your way.

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

While it doesn’t handle infrastructure automation, NestJS makes it easy to integrate with nearly any third-party library, which opens up a lot of possibilities for different projects.

Here’s a look at how you could define a similar service in NestJS:

import { Service } from "encore.dev/service";

export default new Service("hello");

NestJS offers you more flexibility but without the built-in automation found in Encore.ts.

Architecture and Design

The architecture of a framework dictates how your application is built and maintained over time. Both Encore.ts and NestJS are robust, but their core philosophies differ.

Encore.ts is opinionated and *cloud-first, making it ideal for large type-safe *distributed systems with many microservices. One of its standout features is native support for Pub/Sub, enabling event-driven architecture seamlessly.

Here's how you might define an event-driven service in Encore.ts using Pub/Sub:

import { Controller, Get } from '@nestjs/common';

@Controller('hello')
export class HelloWorldController {
  @Get()
  sayHello(): string {
    return 'Hello, World!';
  }
}

NestJS, while capable of supporting microservices and event-driven architectures, offers a more modular approach. Its core follows the MVC pattern, and it allows developers to build systems their way by providing greater control over configurations.

For example, here is how you can define a services and events in NestJS with a far more modularized approach:

import { Topic, Subscription } from "encore.dev/pubsub";

// Define the event type for order creation
export interface OrderCreatedEvent {
    orderId: string;
}

// Create a topic for order creation events
export const orders = new Topic<OrderCreatedEvent>("orders", {
    deliveryGuarantee: "at-least-once",
});

// Create a subscription to listen for the order creation event
export const _ = new Subscription(orders, "process-order", {
    handler: async (event: OrderCreatedEvent) => {
        console.log('Order created:', event.orderId);
    },
});

By design, NestJS grants a lot of control over how components will interact, but the downside is much more boilerplate and you will also have to manage the infrastructure configurations yourself.

Built-in Features and Extensibility

In the development of distributed systems, the features provided by the framework will often facilitate development at the risk of introducing over-complexity.

Encore.ts standout feature is that it provides ways of automating infrastructure provisioning, both in local development and in cloud environments. This includes databases, Pub/Sub, cron jobs, and more. Encore.ts also provides a local development dashboard that auto-generates API documentation, architecture diagrams, and distributed tracing. It also generates the frontend clients, including OpenAPI spec support for REST APIs, which can be a big time saver for developer.

Here is an example of defining a REST API in Encore.ts, which also automatically generates the OpenAPI documentation:

import { Service } from "encore.dev/service";

export default new Service("hello");

With Encore.ts, the moment you define your service, documentation and diagrams are automatically available without additional setup.

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

NestJS has been popular due to its flexibility. From day one, it supports REST, GraphQL, and WebSocket with ease, but the main thing behind its popularity is that it easily connects with third-party libraries.

For example, if you want to add GraphQL support, it’s a simple process.

import { Controller, Get } from '@nestjs/common';

@Controller('hello')
export class HelloWorldController {
  @Get()
  sayHello(): string {
    return 'Hello, World!';
  }
}

NestJS makes it simple to build on its core features, but it doesn’t offer the same level of automated infrastructure and features as Encore.ts does.

Performance and Scalability

Performance is critical when building distributed systems, especially at scale.

Encore.ts is built for high performance with its Rust runtime, which handles I/O operations and multithreading efficiently. Rust’s speed and memory safety give Encore.ts a significant advantage over purely Node.js based frameworks. In terms of scalability, Encore.ts is cloud-native and can autoscale using serverless architecture or Kubernetes, depending on your deployment strategy.

NestJS, on the other hand, is more traditional in how it handles performance and scalability. Because NestJS is purely TypeScript and JavaScript-based, it relies on the performance optimizations you apply during setup. Scaling a NestJS app typically involves manually configuring Kubernetes, Docker, or serverless platforms like AWS Lambda.

While NestJS offers flexibility in how you scale, the configuration requires more manual effort than Encore.ts’s built-in automation.

Let’s understand the difference in performance between encore.ts and Nest.js from the benchmark data in the image below:

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

From the benchmark data, encore.ts stands out when it comes to performance, with a start time of just 8.3 milliseconds, while NestJS takes about 143.7 milliseconds, making it nearly nine times faster than traditional frameworks.

Deployment Strategies

How you deploy your application is a key consideration for any project, especially when thinking about cloud environments.

Encore.ts offers an easy path to deployment through its open-source tools or the Encore Cloud Platform. Using the open-source version, you can use encore build to build your project and create a Docker image, which can then be deployed anywhere Docker is supported:

import { Topic, Subscription } from "encore.dev/pubsub";

// Define the event type for order creation
export interface OrderCreatedEvent {
    orderId: string;
}

// Create a topic for order creation events
export const orders = new Topic<OrderCreatedEvent>("orders", {
    deliveryGuarantee: "at-least-once",
});

// Create a subscription to listen for the order creation event
export const _ = new Subscription(orders, "process-order", {
    handler: async (event: OrderCreatedEvent) => {
        console.log('Order created:', event.orderId);
    },
});

This creates a Docker image that can be deployed anywhere.

Alternatively, if you opt to use the Encore Cloud Platform, it automates the entire CI/CD pipeline, deploying directly to your own cloud on AWS or GCP with serverless or Kubernetes options.

NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices

In contrast, NestJS requires manual setup for deployment. Typically, developers use Docker to containerize NestJS applications and deploy them to a cloud provider of their choice. While this gives you control over your deployment strategy, it requires more configuration—even for a simple application you need to go through many steps:

  1. Create a Dockerfile:
import { Service } from "encore.dev/service";

export default new Service("hello");
  1. Create a docker-compose.yml file:
import { Controller, Get } from '@nestjs/common';

@Controller('hello')
export class HelloWorldController {
  @Get()
  sayHello(): string {
    return 'Hello, World!';
  }
}
  1. Create GitHub Actions workflow for NestJS
import { Topic, Subscription } from "encore.dev/pubsub";

// Define the event type for order creation
export interface OrderCreatedEvent {
    orderId: string;
}

// Create a topic for order creation events
export const orders = new Topic<OrderCreatedEvent>("orders", {
    deliveryGuarantee: "at-least-once",
});

// Create a subscription to listen for the order creation event
export const _ = new Subscription(orders, "process-order", {
    handler: async (event: OrderCreatedEvent) => {
        console.log('Order created:', event.orderId);
    },
});

The larger your application becomes, and the more need you have for multiple staging and testing environments, the more burdensome this manual configuration approach becomes—continuously growing in terms of time spent on maintenance.

Use Case Considerations

When choosing between Encore.ts and NestJS, the decision should be based on the specific needs of your project.

Encore.ts is perfect for cloud-first applications and large distributed systems that benefit from built-in automation. It's Rust-powered runtime and infrastructure management makes it ideal for event-driven architectures, microservices, and high-performance applications. Encore’s fast growing community is a reliable source of support and finding ways of integrating third-party tools.

On the other hand, NestJS shines when flexibility and customization are needed. It’s well-suited for enterprise apps that require fine-grained control over every aspect, and where spending time on manual configuration is acceptable. NestJS’s relatively extensive ecosystem and community support make it easier to find resources and third-party tools.

Conclusion

Choosing between Encore.ts and NestJS comes down to your project’s specific needs.

If you’re looking for a simple, high-performance, cloud-native framework with built-in automation, Encore.ts is an excellent choice. It streamlines the development of distributed systems by managing infrastructure automatically, and its Rust-powered performance is hard to beat.

However, if you need a very flexible, modular framework that gives you control over every minute aspect, NestJS is probably the way to go. Its extensibility and large ecosystem make it a solid choice for custom enterprise solutions.

Both frameworks are powerful in their own right, and the best choice depends on whether you value performance and simplicity, or full flexibility and control.

Next steps

If performance and simplicity matters to your project, it might be a good idea to try out Encore.ts. And it's all Open Source, so you can check out the code and contribute on GitHub.

The above is the detailed content of NestJS vs Encore.ts: Choosing the Right Framework for Your TypeScript Microservices. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Java vs. JavaScript: Clearing Up the Confusion Java vs. JavaScript: Clearing Up the Confusion Jun 20, 2025 am 12:27 AM

Java and JavaScript are different programming languages, each suitable for different application scenarios. Java is used for large enterprise and mobile application development, while JavaScript is mainly used for web page development.

Javascript Comments: short explanation Javascript Comments: short explanation Jun 19, 2025 am 12:40 AM

JavaScriptcommentsareessentialformaintaining,reading,andguidingcodeexecution.1)Single-linecommentsareusedforquickexplanations.2)Multi-linecommentsexplaincomplexlogicorprovidedetaileddocumentation.3)Inlinecommentsclarifyspecificpartsofcode.Bestpractic

How to work with dates and times in js? How to work with dates and times in js? Jul 01, 2025 am 01:27 AM

The following points should be noted when processing dates and time in JavaScript: 1. There are many ways to create Date objects. It is recommended to use ISO format strings to ensure compatibility; 2. Get and set time information can be obtained and set methods, and note that the month starts from 0; 3. Manually formatting dates requires strings, and third-party libraries can also be used; 4. It is recommended to use libraries that support time zones, such as Luxon. Mastering these key points can effectively avoid common mistakes.

Why should you place  tags at the bottom of the ? Why should you place tags at the bottom of the ? Jul 02, 2025 am 01:22 AM

PlacingtagsatthebottomofablogpostorwebpageservespracticalpurposesforSEO,userexperience,anddesign.1.IthelpswithSEObyallowingsearchenginestoaccesskeyword-relevanttagswithoutclutteringthemaincontent.2.Itimprovesuserexperiencebykeepingthefocusonthearticl

JavaScript vs. Java: A Comprehensive Comparison for Developers JavaScript vs. Java: A Comprehensive Comparison for Developers Jun 20, 2025 am 12:21 AM

JavaScriptispreferredforwebdevelopment,whileJavaisbetterforlarge-scalebackendsystemsandAndroidapps.1)JavaScriptexcelsincreatinginteractivewebexperienceswithitsdynamicnatureandDOMmanipulation.2)Javaoffersstrongtypingandobject-orientedfeatures,idealfor

What is event bubbling and capturing in the DOM? What is event bubbling and capturing in the DOM? Jul 02, 2025 am 01:19 AM

Event capture and bubble are two stages of event propagation in DOM. Capture is from the top layer to the target element, and bubble is from the target element to the top layer. 1. Event capture is implemented by setting the useCapture parameter of addEventListener to true; 2. Event bubble is the default behavior, useCapture is set to false or omitted; 3. Event propagation can be used to prevent event propagation; 4. Event bubbling supports event delegation to improve dynamic content processing efficiency; 5. Capture can be used to intercept events in advance, such as logging or error processing. Understanding these two phases helps to accurately control the timing and how JavaScript responds to user operations.

JavaScript: Exploring Data Types for Efficient Coding JavaScript: Exploring Data Types for Efficient Coding Jun 20, 2025 am 12:46 AM

JavaScripthassevenfundamentaldatatypes:number,string,boolean,undefined,null,object,andsymbol.1)Numbersuseadouble-precisionformat,usefulforwidevaluerangesbutbecautiouswithfloating-pointarithmetic.2)Stringsareimmutable,useefficientconcatenationmethodsf

How can you reduce the payload size of a JavaScript application? How can you reduce the payload size of a JavaScript application? Jun 26, 2025 am 12:54 AM

If JavaScript applications load slowly and have poor performance, the problem is that the payload is too large. Solutions include: 1. Use code splitting (CodeSplitting), split the large bundle into multiple small files through React.lazy() or build tools, and load it as needed to reduce the first download; 2. Remove unused code (TreeShaking), use the ES6 module mechanism to clear "dead code" to ensure that the introduced libraries support this feature; 3. Compress and merge resource files, enable Gzip/Brotli and Terser to compress JS, reasonably merge files and optimize static resources; 4. Replace heavy-duty dependencies and choose lightweight libraries such as day.js and fetch

See all articles