Building a Library Management System in Go
In this article, let's explore a Library Management System (LMS) implemented in Go, highlighting its core features, design decisions, and key code snippets.
Core Features of the Library Management System
- Book Management
The system supports multiple copies of each book, allowing for efficient tracking and management of inventory. Each book has properties such as ID, title, author, publication year, and a slice of BookItem, which represents the individual copies.
type Book struct { ID int BookItem []BookItem Title string Author string PublishedYear string mu sync.RWMutex }
- Member Management
Members can borrow books, and the system tracks their borrowing history. Each member has a borrowing quota, ensuring they can borrow a limited number of books at any given time.
type Member struct { ID int Name string ContactInfo string CurrentBorrowed []*BookItem BorrowHistory []*BookItem }
- Borrowing and Returning Books
The borrowing mechanism checks for available copies and updates their status accordingly. The system allows members to return books, updating the book's status and tracking the transaction in the member's borrowing history.
func (m *Member) AddBorrowedBook(bookItem *BookItem) { m.CurrentBorrowed = append(m.CurrentBorrowed, bookItem) } func (l *Library) BorrowBookByMember(memberID int, bookID int) *BookItem { // Logic to borrow a book }
- Concurrency Control
Utilizing Go's concurrency features, the system handles multiple borrowing and returning requests simultaneously. The use of sync.RWMutex ensures that book availability checks and updates are thread-safe, preventing race conditions.
func (b *Book) IsBookAvailable() bool { b.mu.RLock() defer b.mu.RUnlock() for _, bookCopy := range b.BookItem { if bookCopy.Status == Available { return true } } return false }
- Overdue Book Management
The system checks if borrowed books are overdue, implementing business rules to notify members and possibly charge fines.
func (bi *BookItem) IsOverdue() bool { if bi.Status != Borrowed { return false } return time.Since(bi.LastBorrowed) > time.Hour*24*7 }
Design Decisions
Why Go?
Go was chosen for its simplicity, efficiency, and built-in support for concurrency, which is crucial for handling multiple requests in a library setting. Its strong typing and compile-time checks help reduce bugs and improve code maintainability.
Singleton Pattern for Library Instance
The system uses a singleton pattern to manage a single instance of the library. This design ensures that all operations (adding books, managing members) are centralized, simplifying resource management.
var ( libraryInstance *Library once sync.Once ) func GetLibraryInstance() *Library { once.Do(func() { libraryInstance = &Library{books: make(map[int]*Book), members: make(map[int]*Member)} }) return libraryInstance }
Encapsulation and Data Protection
The use of mutexes (sync.RWMutex) protects shared resources and ensures that concurrent access does not lead to inconsistent states. This encapsulation is crucial in a multi-user environment where multiple members may be interacting with the system simultaneously.
Please explore the complete code and contribute to further enhancements in the following repository:
thesaltree
/
low-level-design-golang
Low level system design problems solutions in Golang
Low-Level System Design in Go
Welcome to the Low-Level System Design in Go repository! This repository contains various low-level system design problems and their solutions implemented in Go. The primary aim is to demonstrate the design and architecture of systems through practical examples.
Table of Contents
- Overview
- Parking Lot System
- Elevator System
- Library Management System
Overview
Low-level system design involves understanding the core concepts of system architecture and designing scalable, maintainable, and efficient systems. This repository will try to cover solutions of various problems and scenarios using Go.
Parking Lot System
The first project in this repository is a Parking Lot System. This system simulates a parking lot where vehicles can be parked and unparked. It demonstrates:
- Singleton design pattern for managing the parking lot instance.
- Handling different types of vehicles (e.g., cars, trucks).
- Parking space management across multiple floors.
- Payment processing for parked vehicles.
Features
- Add and remove…
The above is the detailed content of System Design: Library Management System. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Go compiles the program into a standalone binary by default, the main reason is static linking. 1. Simpler deployment: no additional installation of dependency libraries, can be run directly across Linux distributions; 2. Larger binary size: Including all dependencies causes file size to increase, but can be optimized through building flags or compression tools; 3. Higher predictability and security: avoid risks brought about by changes in external library versions and enhance stability; 4. Limited operation flexibility: cannot hot update of shared libraries, and recompile and deployment are required to fix dependency vulnerabilities. These features make Go suitable for CLI tools, microservices and other scenarios, but trade-offs are needed in environments where storage is restricted or relies on centralized management.

To create a buffer channel in Go, just specify the capacity parameters in the make function. The buffer channel allows the sending operation to temporarily store data when there is no receiver, as long as the specified capacity is not exceeded. For example, ch:=make(chanint,10) creates a buffer channel that can store up to 10 integer values; unlike unbuffered channels, data will not be blocked immediately when sending, but the data will be temporarily stored in the buffer until it is taken away by the receiver; when using it, please note: 1. The capacity setting should be reasonable to avoid memory waste or frequent blocking; 2. The buffer needs to prevent memory problems from being accumulated indefinitely in the buffer; 3. The signal can be passed by the chanstruct{} type to save resources; common scenarios include controlling the number of concurrency, producer-consumer models and differentiation

Goensuresmemorysafetywithoutmanualmanagementthroughautomaticgarbagecollection,nopointerarithmetic,safeconcurrency,andruntimechecks.First,Go’sgarbagecollectorautomaticallyreclaimsunusedmemory,preventingleaksanddanglingpointers.Second,itdisallowspointe

Go is ideal for system programming because it combines the performance of compiled languages ??such as C with the ease of use and security of modern languages. 1. In terms of file and directory operations, Go's os package supports creation, deletion, renaming and checking whether files and directories exist. Use os.ReadFile to read the entire file in one line of code, which is suitable for writing backup scripts or log processing tools; 2. In terms of process management, the exec.Command function of the os/exec package can execute external commands, capture output, set environment variables, redirect input and output flows, and control process life cycles, which are suitable for automation tools and deployment scripts; 3. In terms of network and concurrency, the net package supports TCP/UDP programming, DNS query and original sets.

FunctionaloptionsinGoareadesignpatternusedtocreateflexibleandmaintainableconstructorsforstructswithmanyoptionalparameters.Insteadofusinglongparameterlistsorconstructoroverloads,thispatternpassesfunctionsthatmodifythestruct'sconfiguration.Thefunctions

In Go language, calling a structure method requires first defining the structure and the method that binds the receiver, and accessing it using a point number. After defining the structure Rectangle, the method can be declared through the value receiver or the pointer receiver; 1. Use the value receiver such as func(rRectangle)Area()int and directly call it through rect.Area(); 2. If you need to modify the structure, use the pointer receiver such as func(r*Rectangle)SetWidth(...), and Go will automatically handle the conversion of pointers and values; 3. When embedding the structure, the method of embedded structure will be improved, and it can be called directly through the outer structure; 4. Go does not need to force use getter/setter,

In Go, an interface is a type that defines behavior without specifying implementation. An interface consists of method signatures, and any type that implements these methods automatically satisfy the interface. For example, if you define a Speaker interface that contains the Speak() method, all types that implement the method can be considered Speaker. Interfaces are suitable for writing common functions, abstract implementation details, and using mock objects in testing. Defining an interface uses the interface keyword and lists method signatures, without explicitly declaring the type to implement the interface. Common use cases include logs, formatting, abstractions of different databases or services, and notification systems. For example, both Dog and Robot types can implement Speak methods and pass them to the same Anno

TheGoiopackageprovidesinterfaceslikeReaderandWritertohandleI/Ooperationsuniformlyacrosssources.1.io.Reader'sReadmethodenablesreadingfromvarioussourcessuchasfilesorHTTPresponses.2.io.Writer'sWritemethodfacilitateswritingtodestinationslikestandardoutpu
