Hi devs,
The Perceptron is one of the simplest and most fundamental concepts in machine learning. It’s a binary linear classifier that forms the basis of neural networks. In this post, I'll walk through the steps to understand and implement a Perceptron from scratch in Python.
Let's dive in!
What is a Perceptron?
A Perceptron is a basic algorithm for supervised learning of binary classifiers. Given input features, the Perceptron learns weights that help separate classes based on a simple threshold function. Here’s how it works in simple terms:
- Input: A vector of features (e.g., [x1, x2]).
- Weights: Each input feature has a weight, which the model adjusts based on how well the model is performing.
- Activation Function: Computes the weighted sum of the input features and applies a threshold to decide if the result belongs to one class or the other.
Mathematically, it looks like this:
f(x) = w1*x1 w2*x2 ... wn*xn b
Where:
- f(x) is the output,
- w represents weights,
- x represents input features, and
- b is the bias term.
If f(x) is greater than or equal to a threshold, the output is class 1; otherwise, it’s class 0.
Step 1: Import Libraries
We’ll use only NumPy here for matrix operations to keep things lightweight.
import numpy as np
Step 2: Define the Perceptron Class
We’ll build the Perceptron as a class to keep everything organized. The class will include methods for training and prediction.
class Perceptron: def __init__(self, learning_rate=0.01, epochs=1000): self.learning_rate = learning_rate self.epochs = epochs self.weights = None self.bias = None def fit(self, X, y): # Number of samples and features n_samples, n_features = X.shape # Initialize weights and bias self.weights = np.zeros(n_features) self.bias = 0 # Training for _ in range(self.epochs): for idx, x_i in enumerate(X): # Calculate linear output linear_output = np.dot(x_i, self.weights) + self.bias # Apply step function y_predicted = self._step_function(linear_output) # Update weights and bias if there is a misclassification if y[idx] != y_predicted: update = self.learning_rate * (y[idx] - y_predicted) self.weights += update * x_i self.bias += update def predict(self, X): # Calculate linear output and apply step function linear_output = np.dot(X, self.weights) + self.bias y_predicted = self._step_function(linear_output) return y_predicted def _step_function(self, x): return np.where(x >= 0, 1, 0)
In the code above:
- fit: This method trains the model by adjusting weights and bias whenever it misclassifies a point.
- predict: This method computes predictions on new data.
- _step_function: This function applies a threshold to determine the output class.
Step 3: Prepare a Simple Dataset
We’ll use a small dataset to make it easy to visualize the output. Here’s a simple AND gate dataset:
# AND gate dataset X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([0, 0, 0, 1]) # Labels for AND gate
Step 4: Train and Test the Perceptron
Now, let’s train the Perceptron and test its predictions.
# Initialize Perceptron p = Perceptron(learning_rate=0.1, epochs=10) # Train the model p.fit(X, y) # Test the model print("Predictions:", p.predict(X))
Expected output for AND gate:
import numpy as np
Explanation of the Perceptron Learning Process
- Initialize Weights and Bias: At the start, weights are set to zero, which allows the model to start learning from scratch.
- Calculate Linear Output: For each data point, the Perceptron computes the weighted sum of the inputs plus the bias.
- Activation (Step Function): If the linear output is greater than or equal to zero, it assigns class 1; otherwise, it assigns class 0.
- Update Rule: If the prediction is incorrect, the model adjusts weights and bias in the direction that reduces the error. The update rule is given by: weights = learning_rate * (y_true - y_pred) * x
This makes the Perceptron update only for misclassified points, gradually pushing the model closer to the correct decision boundary.
Visualizing Decision Boundaries
Visualize the decision boundary after training. This is especially helpful if you’re working with more complex datasets. For now, we’ll keep things simple with the AND gate.
Extending to Multi-Layer Perceptrons (MLPs)
While the Perceptron is limited to linearly separable problems, it’s the foundation of more complex neural networks like Multi-Layer Perceptrons (MLPs). With MLPs, we add hidden layers and activation functions (like ReLU or Sigmoid) to solve non-linear problems.
Summary
The Perceptron is a straightforward but foundational machine learning algorithm. By understanding how it works and implementing it from scratch, we gain insights into the basics of machine learning and neural networks. The beauty of the Perceptron lies in its simplicity, making it a perfect starting point for anyone interested in AI.
The above is the detailed content of Implementing a Perceptron from Scratch in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
