


Using the Web API for FLUX [pro]: The Latest Image Generation AI Model by the Original Team of Stable Diffusion
Oct 20, 2024 pm 12:38 PMIntroduction
Previously, I wrote an article titled “Running the FLUX.1 Image ([dev]/[schnell]) Generation AI Model by Stable Diffusion’s Original Developers on a MacBook (M2).” It demonstrated the FLUX.1 image generation model from Black Forest Labs, founded by the creators of Stable Diffusion.
Now, two months later, FLUX 1.1 [pro] (codenamed Blueberry) has been released, along with public access to its web API, though it’s still in beta.
Today, we release FLUX1.1 [pro], our most advanced and efficient model yet, alongside the general availability of the beta BFL API. This release marks a significant step forward in our mission to empower creators, developers, and enterprises with scalable, state-of-the-art generative technology.
Reference: Announcing FLUX1.1 [pro] and the BFL API - Black Forest Labs
In this post, I will demonstrate how to use the FLUX 1.1 [pro] web API.
All code examples are written in Python.
Creating an Account and an API Key
Start by registering an account and logging in on the API page under the Register option.
Credits are priced at $0.01 each, and I received 50 credits upon registration (this may vary).
Based on the Pricing page, the model costs are as follows:
- FLUX 1.1 [pro]: $0.04 per image
- FLUX.1 [pro]: $0.05 per image
- FLUX.1 [dev]: $0.025 per image
Once you’re logged in, generate an API key by selecting Add Key and entering a name of your choice.
Your key will appear as shown below.
Environment Setup
I'm using macOS 14 Sonoma as my operating system.
The Python version is:
$ python --version Python 3.12.2
To run the sample code, I installed requests:
$ pip install requests
I confirmed the installed version:
$ pip list | grep -e requests requests 2.31.0
To avoid hardcoding, I saved the API key as an environment variable by editing the zshrc file.
$ open ~/.zshrc
I named the environment variable BFL_API_KEY:
export BFL_API_KEY=<Your API Key Here>
Example Code
Below is the sample code from the Getting Started, with some additional comments. Ideally, it should handle errors using the status, but I left it unchanged for simplicity.
import os import requests import time # Request request = requests.post( 'https://api.bfl.ml/v1/flux-pro-1.1', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), 'Content-Type': 'application/json', }, json={ 'prompt': 'A cat on its back legs running like a human is holding a big silver fish with its arms. The cat is running away from the shop owner and has a panicked look on his face. The scene is situated in a crowded market.', 'width': 1024, 'height': 768, }, ).json() print(request) request_id = request["id"] # Wait for completion while True: time.sleep(0.5) result = requests.get( 'https://api.bfl.ml/v1/get_result', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), }, params={ 'id': request_id, }, ).json() if result["status"] == "Ready": print(f"Result: {result['result']['sample']}") break else: print(f"Status: {result['status']}")
In this example, the prompt is:
A cat on its back legs running like a human is holding a big silver fish with its arms. The cat is running away from the shop owner and has a panicked look on his face. The scene is situated in a crowded market.
The final result format looks like this. The response time was faster compared to other APIs I’ve tested.
$ python --version Python 3.12.2
The sample contains the URL of the generated image, which was hosted on bflapistorage.blob.core.windows.net when I tested it.
Here's the generated image:
The result closely matches the prompt, capturing the sense of urgency.
Experimenting with Alternative Prompts
I tried different prompts to generate varied images.
Japanese Moe Heroine
Prompt: "Japanese moe heroine," using anime style.
$ pip install requests
Sweets from Popular Japanese Anime
Prompt: "Sweets that appear in popular Japanese anime," using anime style.
$ pip list | grep -e requests requests 2.31.0
Male High School Student on a School Trip
Prompt: "Male high school student on a school trip," using anime style.
$ open ~/.zshrc
A Princess Playing Guitar
Prompt: "A princess playing guitar," using fantasy-art style.
export BFL_API_KEY=<Your API Key Here>
A Cute Fairy on Top of a White Laptop
Prompt: "A cute fairy on top of a white laptop," using photographic style.
import os import requests import time # Request request = requests.post( 'https://api.bfl.ml/v1/flux-pro-1.1', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), 'Content-Type': 'application/json', }, json={ 'prompt': 'A cat on its back legs running like a human is holding a big silver fish with its arms. The cat is running away from the shop owner and has a panicked look on his face. The scene is situated in a crowded market.', 'width': 1024, 'height': 768, }, ).json() print(request) request_id = request["id"] # Wait for completion while True: time.sleep(0.5) result = requests.get( 'https://api.bfl.ml/v1/get_result', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), }, params={ 'id': request_id, }, ).json() if result["status"] == "Ready": print(f"Result: {result['result']['sample']}") break else: print(f"Status: {result['status']}")
28-Year-Old Japanese Woman with Black Bobbed Hair
Prompt: "28-year-old Japanese pretty woman with black bobbed hair," using photographic style.
$ python --version Python 3.12.2
Hong Kong Downtown in the 1980s
Prompt: "Hong Kong downtown in the 1980s," using photographic style.
$ pip install requests
Shinjuku Kabukicho in 2020
Prompt: "Shinjuku Kabukicho in 2020," using photographic style.
$ pip list | grep -e requests requests 2.31.0
All of the generated images were of exceptional quality.
After generating so many high-quality AI images, reality almost feels surreal.
Conclusion
Black Forest Labs continues to innovate and enhance its AI models.
I’m looking forward to the future release of video generation capabilities.
Original Japanese Article
Stable Diffusionのオリジナル開発陣による畫像生成AIモデル最新版FLUX 1.1 [pro]のWeb APIを呼んでいくつかの畫像を生成してみた
The above is the detailed content of Using the Web API for FLUX [pro]: The Latest Image Generation AI Model by the Original Team of Stable Diffusion. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
