国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Inhaltsverzeichnis
Speichern und Schieben des Modells
Modellbewertung
Zusammenführen des Adapters
Zugriff auf das fein abgestimmte Modell
Schlussfolgerung
Heim Technologie-Peripherieger?te KI Mistral 7B Tutorial: Eine Schritt-für-Schritt-Anleitung zur Verwendung und der Feinabstimmung Mistral 7B

Mistral 7B Tutorial: Eine Schritt-für-Schritt-Anleitung zur Verwendung und der Feinabstimmung Mistral 7B

Mar 09, 2025 am 10:37 AM

Dieses Tutorial bietet einen umfassenden Leitfaden zur Verwendung und Feinabstimmung des Mistral 7B-Sprachmodells für natürliche Sprachverarbeitungsaufgaben. Sie erfahren

Zugriff auf Mistral 7B

Mistral 7b ist über verschiedene Plattformen zug?nglich, darunter das Gesicht, die Scheitelpunkt -AI, die Replikate, der Sagemaker -Jumpstart und die Baseten. Dieses Tutorial konzentriert sich auf die Verwendung von Kaggle's "Models" -Funktion für optimierten Zugriff und beseitigt die Notwendigkeit manueller Downloads.

Dieser Abschnitt zeigt das Laden des Modells aus Kaggle und Durchführung von Inferenz. Es sind wichtige Bibliotheksaktualisierungen von entscheidender Bedeutung, um Fehler zu verhindern:

<code>!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes</code>
4-Bit-Quantisierung mit NF4-Konfiguration unter Verwendung von BitsandBytes verbessert die Ladegeschwindigkeit und reduziert die Speicherverwendung:

<code>from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)</code>
Hinzufügen des Mistral 7B -Modells zu Ihrem Kaggle -Notizbuch umfasst die folgenden Schritte:

    Klicken Sie im rechten Bereich auf "Modelle hinzufügen".
  1. Suche nach "Mistral 7b", w?hlen Sie "7B-V0.1-HF" und fügen Sie es hinzu.
  2. Beachten Sie den Verzeichnispfad.

Mistral 7B Tutorial: A Step-by-Step Guide to Using and Fine-Tuning Mistral 7B

Modell und Tokenizer Loading verwendet die Bibliothek

: transformers

<code>model_name = "/kaggle/input/mistral/pytorch/7b-v0.1-hf/1"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
        model_name,
        load_in_4bit=True,
        quantization_config=bnb_config,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True,
    )</code>
Inferenz wird mit der Funktion

vereinfacht: pipeline

<code>pipe = pipeline(
    "text-generation", 
    model=model, 
    tokenizer = tokenizer, 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)</code>
Aufforderung des Modells und Einstellungsparameter:

<code>prompt = "As a data scientist, can you explain the concept of regularization in machine learning?"

sequences = pipe(
    prompt,
    do_sample=True,
    max_new_tokens=100, 
    temperature=0.7, 
    top_k=50, 
    top_p=0.95,
    num_return_sequences=1,
)
print(sequences[0]['generated_text'])</code>
Mistral 7B Feinabstimmung

Dieser Abschnitt führt Sie durch die Feinabstimmung Mistral 7b im Datensatz

unter Verwendung von Techniken wie PEFT, 4-Bit-Quantisierung und Qlora. Das Tutorial bezieht sich auch auf einen Leitfaden zu Feinabstimmungslama 2 für einen weiteren Kontext. guanaco-llama2-1k

Setup

notwendige Bibliotheken sind installiert:

<code>%%capture
%pip install -U bitsandbytes
%pip install -U transformers
%pip install -U peft
%pip install -U accelerate
%pip install -U trl</code>
relevante Module werden importiert:

<code>from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig,HfArgumentParser,TrainingArguments,pipeline, logging
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
import os,torch, wandb
from datasets import load_dataset
from trl import SFTTrainer</code>
API -Schlüssel werden mit Kaggle Secrets sicher verwaltet:

<code>from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
secret_hf = user_secrets.get_secret("HUGGINGFACE_TOKEN")
secret_wandb = user_secrets.get_secret("wandb")</code>
Umarmende Gesicht und Gewichte und Verzerrungen werden konfiguriert:

<code>!huggingface-cli login --token $secret_hf
wandb.login(key = secret_wandb)
run = wandb.init(
    project='Fine tuning mistral 7B', 
    job_type="training", 
    anonymous="allow"
)</code>
Basismodell, Datensatz und neuer Modellname sind definiert:

<code>base_model = "/kaggle/input/mistral/pytorch/7b-v0.1-hf/1"
dataset_name = "mlabonne/guanaco-llama2-1k"
new_model = "mistral_7b_guanaco"</code>
Datenladen

Der Datensatz ist geladen und ein Beispiel wird angezeigt:

<code>dataset = load_dataset(dataset_name, split="train")
dataset["text"][100]</code>

Mistral 7B Tutorial: A Step-by-Step Guide to Using and Fine-Tuning Mistral 7B

Laden von Mistral 7B

Das Modell ist mit 4-Bit-Genauigkeit geladen:

<code>bnb_config = BitsAndBytesConfig(  
    load_in_4bit= True,
    bnb_4bit_quant_type= "nf4",
    bnb_4bit_compute_dtype= torch.bfloat16,
    bnb_4bit_use_double_quant= False,
)
model = AutoModelForCausalLM.from_pretrained(
        base_model,
        load_in_4bit=True,
        quantization_config=bnb_config,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True,
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()</code>
Laden des Tokenizers

Der Tokenizer ist geladen und konfiguriert:

<code>tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_eos_token = True
tokenizer.add_bos_token, tokenizer.add_eos_token</code>
Hinzufügen des Adapters

Ein Lora-Adapter wird für eine effiziente Feinabstimmung hinzugefügt:

<code>model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"]
)
model = get_peft_model(model, peft_config)</code>
Hyperparameter

Trainingsargumente werden definiert:

<code>training_arguments = TrainingArguments(
    output_,
    num_train_epochs=1,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=1,
    optim="paged_adamw_32bit",
    save_steps=25,
    logging_steps=25,
    learning_rate=2e-4,
    weight_decay=0.001,
    fp16=False,
    bf16=False,
    max_grad_norm=0.3,
    max_steps=-1,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="constant",
    report_to="wandb"
)</code>
SFT -Training

Der SftTrainer ist konfiguriert und das Training wird eingeleitet:

<code>!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes</code>

Mistral 7B Tutorial: A Step-by-Step Guide to Using and Fine-Tuning Mistral 7B

Speichern und Schieben des Modells

Das fein abgestimmte Modell wird gerettet und auf den umarmenden Gesichtszentrum gedrückt:

<code>from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)</code>

Modellbewertung

Modellleistung wird unter Verwendung von Gewichten und Verzerrungen bewertet. Inferenzbeispiele werden bereitgestellt.

Zusammenführen des Adapters

Der Adapter wird mit dem Basismodell zusammengeführt, und das resultierende Modell wird zum Umarmungsgesicht gedrückt.

Zugriff auf das fein abgestimmte Modell

Das fusionierte Modell ist vom Umarmungsgesicht geladen und die Schlussfolgerung wird demonstriert.

Schlussfolgerung

Das Tutorial schlie?t mit einer Zusammenfassung der Funktionen von Mistral 7B und einer Zusammenfassung der Schritte, die mit dem Zugriff auf, Feinabstimmung und Bereitstellung des Modells verbunden sind. Ressourcen und FAQs sind ebenfalls enthalten. Der Schwerpunkt liegt auf der Bereitstellung eines praktischen Leitfadens für Benutzer, die mit diesem leistungsstarken Sprachmodell arbeiten k?nnen.

Das obige ist der detaillierte Inhalt vonMistral 7B Tutorial: Eine Schritt-für-Schritt-Anleitung zur Verwendung und der Feinabstimmung Mistral 7B. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

PHP-Tutorial
1502
276
Kimi K2: Das m?chtigste Open-Source-Agentenmodell Kimi K2: Das m?chtigste Open-Source-Agentenmodell Jul 12, 2025 am 09:16 AM

Erinnern Sie sich an die Flut chinesischer Open-Source-Modelle, die die Genai-Industrie Anfang dieses Jahres gest?rt haben? W?hrend Deepseek die meisten Schlagzeilen machte, war Kimi K1.5 einer der herausragenden Namen in der Liste. Und das Modell war ziemlich cool.

Grok 4 gegen Claude 4: Was ist besser? Grok 4 gegen Claude 4: Was ist besser? Jul 12, 2025 am 09:37 AM

Bis Mitte 2025 heizt sich das KI ?Wettret“ auf, und Xai und Anthropic haben beide ihre Flaggschiff-Modelle GROK 4 und Claude 4 ver?ffentlicht. Diese beiden Modelle befinden

10 erstaunliche humanoide Roboter, die heute bereits unter uns gehen 10 erstaunliche humanoide Roboter, die heute bereits unter uns gehen Jul 16, 2025 am 11:12 AM

Aber wir müssen wahrscheinlich nicht einmal 10 Jahre warten, um einen zu sehen. Was als erste Welle wirklich nützlicher, menschlicher Maschinen angesehen werden k?nnte, ist bereits da. In den letzten Jahren wurden eine Reihe von Prototypen und Produktionsmodellen aus t herausgezogen

Context Engineering ist der neue ' Schnelltechnik Context Engineering ist der neue ' Schnelltechnik Jul 12, 2025 am 09:33 AM

Bis zum Vorjahr wurde eine schnelle Engineering als entscheidende F?higkeit zur Interaktion mit gro?artigen Modellen (LLMs) angesehen. In jüngster Zeit sind LLM jedoch in ihren Argumentations- und Verst?ndnisf?higkeiten erheblich fortgeschritten. Natürlich unsere Erwartung

Leia's Imgsitary Mobile App bringt die 3D -Tiefe in allt?gliche Fotos Leia's Imgsitary Mobile App bringt die 3D -Tiefe in allt?gliche Fotos Jul 09, 2025 am 11:17 AM

Aufgebaut auf Leia's propriet?rer neuronaler Tiefenmotor verarbeitet die App still Bilder und fügt die natürliche Tiefe zusammen mit simulierten Bewegungen hinzu - wie Pfannen, Zoome und Parallaxeffekte -, um kurze Video -Rollen zu erstellen, die den Eindruck erwecken, in die SCE einzusteigen

Was sind die 7 Arten von AI -Agenten? Was sind die 7 Arten von AI -Agenten? Jul 11, 2025 am 11:08 AM

Stellen Sie sich vor, dass etwas Geformtes, wie ein KI -Motor, der bereit ist, ein detailliertes Feedback zu einer neuen Kleidungssammlung von Mailand oder automatische Marktanalyse für ein weltweit betriebenes Unternehmen zu geben, oder intelligentes Systeme, das eine gro?e Fahrzeugflotte verwaltet.

Diese KI -Modelle haben nicht die Sprache gelernt, sie lernten Strategie Diese KI -Modelle haben nicht die Sprache gelernt, sie lernten Strategie Jul 09, 2025 am 11:16 AM

Eine neue Studie von Forschern am King's College London und der University of Oxford teilt die Ergebnisse dessen, was passiert ist, als OpenAI, Google und Anthropic in einem Cutthroat -Wettbewerb zusammengeworfen wurden, der auf dem iterierten Dilemma des Gefangenen basiert. Das war nein

Versteckte Befehlskrise: Forscher Game KI, um ver?ffentlicht zu werden Versteckte Befehlskrise: Forscher Game KI, um ver?ffentlicht zu werden Jul 13, 2025 am 11:08 AM

Wissenschaftler haben eine clevere, aber alarmierende Methode aufgedeckt, um das System zu umgehen. Juli 2025 markierte die Entdeckung einer aufw?ndigen Strategie, bei der Forscher unsichtbare Anweisungen in ihre akademischen Einreichungen eingefügt haben - diese verdeckten Richtlinien waren Schwanz

See all articles