


Wie optimiert man HSV-Grenzen für eine genaue Farberkennung in OpenCV?
Dec 01, 2024 am 10:00 AMAuswahl optimaler HSV-Grenzen für die Farberkennung mit cv::inRange (OpenCV)
In der Bildverarbeitung wird h?ufig der HSV-Farbraum verwendet zur Farberkennung. Die Auswahl geeigneter oberer und unterer HSV-Grenzen ist entscheidend für die genaue Identifizierung der Zielfarben. Diese Frage untersucht den Auswahlprozess für ein Bild mit einem orangefarbenen Deckel auf einer Kaffeedose.
Obwohl ein gesch?tzter HSV-Mittelwert von (22, 59, 100) für den Deckel angegeben wurde, wurde ein erster Versuch mit Grenzen (18) durchgeführt , 40, 90) und (27, 255, 255) lieferten unbefriedigende Ergebnisse. Um dies zu beheben, müssen wir potenzielle Probleme in der HSV-Skala und im Bildformat berücksichtigen.
Problem 1: HSV-Skalenvarianz
Verschiedene Anwendungen k?nnen unterschiedliche HSV-Skalen verwenden. GIMP verwendet H = 0–360, S = 0–100, V = 0–100, w?hrend OpenCV H: 0–179, S: 0–255, V: 0–255 verwendet. In diesem Fall sollte der GIMP-Farbtonwert (22) halbiert werden, um der Skala von OpenCV zu entsprechen, was zu einem Bereich von (5, 50, 50) – (15, 255, 255) führt.
Problem 2: Bildformatkonvertierung
OpenCV arbeitet mit Bildern im BGR-Format, nicht mit RGB. Daher ist es notwendig, die Farbkonvertierungslinie in cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV) zu ?ndern. Dadurch wird sichergestellt, dass das Bild vor der HSV-Grenzerkennung korrekt konvertiert wird.
Durch die Einbeziehung dieser Anpassungen erhalten wir ein vielversprechenderes Ergebnis:
[Bild der verbesserten Erkennung]
Obwohl Die Ausgabe ist nicht perfekt, die Erkennung des orangefarbenen Deckels ist verbessert. Falsche Erkennungen k?nnen minimiert werden, indem die gr??te Kontur ausgew?hlt wird, die dem Lid entspricht.
Schlussfolgerung
Die Auswahl geeigneter HSV-Grenzen erfordert die Berücksichtigung von Ma?stabsabweichungen und die ordnungsgem??e Konvertierung des Bildformats. Durch die Behebung dieser Probleme k?nnen wir die Genauigkeit der Farberkennung mithilfe von cv::inRange in OpenCV verbessern.
Das obige ist der detaillierte Inhalt vonWie optimiert man HSV-Grenzen für eine genaue Farberkennung in OpenCV?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Stock Market GPT
KI-gestützte Anlageforschung für intelligentere Entscheidungen

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Die Methode zum Ausfüllen von Excel -Daten in Webformulare mithilfe von Python lautet: Verwenden Sie zun?chst Pandas, um Excel -Daten zu lesen und dann mit Selen das Browser zu steuern, um das Formular automatisch zu füllen und zu übermitteln. Zu den spezifischen Schritten geh?ren die Installation von Pandas, OpenPyxl- und Selenium -Bibliotheken, das Herunterladen des entsprechenden Browsertreibers, die Verwendung von Pandas zum Lesen von Namen, E -Mails, Telefon und anderen Feldern in der Datei data.xlsx, starten Sie den Browser über Selen, um das Ziel -Last zu erstellen. Wenn Sie die Ausnahme des Stellverfahrens verarbeiten, k?nnen Sie die Ausnahme des Stellverfahrens verarbeiten. Formieren und verarbeiten Sie alle Datenlinien in einer Schleife.

ClassMethodsinpythonarboundtotheClassandNottoinstances, die THEMTOBECALLED WITHOUT CREATEANOBJECT.1.Theyaredefinedused the@classMethoddecoratorandtakeClsastheFirstparameter, überlegt

Bei der Verarbeitung gro?er Datens?tze, die den Speicher in Python überschreiten, k?nnen sie nicht gleichzeitig in RAM geladen werden. Stattdessen sollten Strategien wie Chunking -Verarbeitung, Festplattenspeicher oder Streaming eingesetzt werden. CSV -Dateien k?nnen in Stücken über Pandas 'Chunkize -Parameter und den verarbeiteten Block nach Block gelesen werden. Dask kann verwendet werden, um die Parallelisierungs- und Aufgabenplanung ?hnlich wie die PANDAS -Syntax zur Unterstützung gro?er Speicherdatenoperationen. Schreiben Sie Generatorfunktionen, um die Zeile der Textdateien für Zeile zu lesen, um die Speicherverwendung zu reduzieren. Verwenden Sie das Parquet -S?ulen -Speicherformat in Kombination mit Pyarrow, um bestimmte Spalten oder Zeilengruppen effizient zu lesen. Verwenden Sie das Memmap von Numpy zur Speicherkarte gro?e numerische Arrays, um auf Datenfragmente bei Bedarf zuzugreifen, oder speichern Sie Daten in leichten Daten wie SQLite oder Duckdb.

asyncio.queue ist ein Warteschlangenwerkzeug für eine sichere Kommunikation zwischen asynchronen Aufgaben. 1. Der Produzent fügt Daten über AwaitQueue.put (Element) hinzu, und der Verbraucher verwendet AwaitQueue.get (), um Daten zu erhalten. 2. Für jeden Artikel, den Sie verarbeiten, müssen Sie Queue.task_done () anrufen, um auf Queue.join () zu warten, um alle Aufgaben zu erledigen. 3. Verwenden Sie keine als Endsignal, um den Verbraucher zu benachrichtigen, um zu stoppen. 4. Wenn mehrere Verbraucher mehrere Endsignale gesendet werden müssen oder alle Aufgaben bearbeitet wurden, bevor die Aufgabe abgesagt wird. 5. Die Warteschlange unterstützt die Einstellung der Maxsize -Grenzkapazit?t, die Einstellung und Erhalten von Vorg?ngen automatisch und blockiert die Ereignisschleife nicht, und das Programm übergeht schlie?lich CORD

Dieser Artikel enth?lt detaillierte L?sungen und Best Practices für das Problem, dass Datensatznamen mit Gruppennamen in Konflikten bei der Betrieb von HDF5 -Dateien mithilfe der H5PY -Bibliothek stehen. Der Artikel analysiert die Ursachen von Konflikten ausführlich und liefert Code -Beispiele, um zu zeigen, wie solche Probleme effektiv vermieden und behoben werden k?nnen, um das ordnungsgem??e Lesen und Schreiben von HDF5 -Dateien sicherzustellen. In diesem Artikel k?nnen die Leser die HDF5 -Dateistruktur besser verstehen und einen robusteren H5PY -Code schreiben.

Python kann für die B?rsenmarktanalyse und -vorhersage verwendet werden. Die Antwort lautet ja. Durch die Verwendung von Bibliotheken wie YFInance, Pandas zur Datenreinigung und Feature -Engineering, die Kombination von Matplotlib oder Seeborn zur visuellen Analyse und Verwendung von Modellen wie ARIMA, Zufallswald, Xgboost oder LSTM, um ein Vorhersagesystem aufzubauen, und die Bewertung der Leistung durch Backtesting zu bewerten. Schlie?lich kann die Anwendung mit Kolben oder Fastapi eingesetzt werden, aber der Unsicherheit der Marktprognosen, der überanpassungsrisiken und der Transaktionskosten und dem Erfolg h?ngt von der Datenqualit?t, dem Modelldesign und den angemessenen Erwartungen ab.

In Python werden regelm??ige Ausdrücke über das RE -Modul zum Suchen, Anpassen und Manipulieren von Saiten implementiert. 1. Verwenden Sie re.Search (), um das erste Spiel in der gesamten Zeichenfolge zu finden, re.Match () stimmt nur am Anfang der Zeichenfolge überein. 2. Verwenden Sie Klammern (), um die passenden Untergruppen zu erfassen, die benannt werden k?nnen, um die Lesbarkeit zu verbessern. 3.. Re.Findall () gibt alle nicht überlappenden übereinstimmungen zurück und re.Finditer () gibt den Iterator des Matching-Objekts zurück; V. 5. Gemeinsame Muster umfassen \ d, \ w, \ s usw., Sie k?nnen re.ignorecase, re.multiline, re.dotall, RE verwenden

Verwendet.ArgvforsimplearGumentAccess, whErGumentsaranemanuell und und -AnoautomaticValidationorHelpiSpivided.2.Useargparseforrobustinterfaces, ASSITSUPPORTSAUTOMATICHELP, TYPLECKING, OPTIONALARGUMENTEN UNDDEFAULTSAUTSAUTOMATICHELP, TYPELALAGUMENTEN UNDDEFAILTVORTSAUTSEILUTE.
