国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Heim Backend-Entwicklung Python-Tutorial Pydantic: Das Ende der manuellen Validierungen! ?

Pydantic: Das Ende der manuellen Validierungen! ?

Nov 26, 2024 am 12:07 AM

Pydantic ist eine Datenvalidierungs- und Einstellungsverwaltungsbibliothek für Python. Es verwendet Python-Typhinweise zum Validieren und Analysieren von Daten und stellt so sicher, dass Ihr Code mit ordnungsgem?? strukturierten und typisierten Daten funktioniert. Durch die Nutzung der datenklassen?hnlichen Modellstruktur von Python erleichtert Pydantic die Definition von Schemata für komplexe Daten und die automatische Validierung und Serialisierung/Deserialisierung von Daten auf saubere, pythonische Weise. Lassen Sie uns die Hauptfunktionen erkunden:

Datenvalidierung

Automatische Validierung von Eingabedaten anhand eines Schemas mithilfe der Typhinweise von Python.

from pydantic import BaseModel, ValidationError

class User(BaseModel):
    id: int
    name: str
    email: str

# Valid input
user = User(id=1, name="John Doe", email="john@example.com")
print(user)

# Invalid input
try:
    user = User(id="not-an-integer", name="Jane", email="jane@example.com")
except ValidationError as err:
    print(err)

Wenn Sie ein Datenmodell definieren m?chten, verwenden Sie pydantic.BaseModel!

Funktionsvalidierung

Pydantic bietet leistungsstarke Tools zur Validierung nicht nur von Datenmodellen, sondern auch der Eingabe und Ausgabe von Funktionen. Dies wird mithilfe des @validate_call-Dekorators erreicht, der es Ihnen erm?glicht, eine strikte Datenvalidierung für Funktionsargumente und Rückgabewerte zu erzwingen. Wenn die bereitgestellten Argumente oder der Rückgabetyp nicht mit den erwarteten Typen übereinstimmen, wird ein ValidationError ausgel?st.

from pydantic import validate_call

@validate_call
def greet(name: str, age: int) -> str:
    return f"Hello {name}, you are {age} years old."

# Valid input
print(greet("Alice", 30))  # Output: Hello Alice, you are 30 years old.

# Invalid input
try:
    greet("Bob", "not-a-number")
except Exception as e:
    print(e)

Durch die Aktivierung des Flags ?validate_return“ in @validate_call validiert Pydantic auch den Rückgabewert der Funktion anhand ihres annotierten Rückgabetyps. Dadurch wird sichergestellt, dass die Funktion dem erwarteten Ausgabeschema entspricht.

from pydantic import validate_call

@validate_call(validate_return=True)
def calculate_square(number: int) -> int:
    return number ** 2  # Correct return type

# Valid input and return
print(calculate_square(4))  # Output: 16

# Invalid return value
@validate_call(validate_return=True)
def broken_square(number: int) -> int:
    return str(number ** 2)  # Incorrect return type

try:
    broken_square(4)
except Exception as e:
    print(e)

Parsing

Pydantic kann komplexe verschachtelte Strukturen, einschlie?lich JSON-Daten, in Modellobjekte analysieren.

from pydantic import BaseModel
from typing import List

class Item(BaseModel):
    name: str
    price: float

class Order(BaseModel):
    items: List[Item]
    total: float

# JSON-like data
data = {
    "items": [
        {"name": "Apple", "price": 1.2},
        {"name": "Banana", "price": 0.8}
    ],
    "total": 2.0
}

order = Order(**data) 
print(order) # items=[Item(name='Apple', price=1.2), Item(name='Banana', price=0.8)] total=2.0

Serialisierung und Deserialisierung

Pydantische Modelle k?nnen in JSON oder W?rterbücher serialisiert und wieder rekonstruiert werden.

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

# Create a model instance
user = User(id=1, name="Alice", email="alice@example.com")

# Serialize to dictionary and JSON
user_dict = user.model_dump()
user_json = user.model_dump(mode='json')

print("Dictionary:", user_dict)
print("JSON:", user_json)

# Deserialize back to the model
new_user = User.model_validate(user_json)
print("Parsed User:", new_user)

Flexible Validierung

Die Datenvalidierung ist keine erzwungene Validierung. Wenn Sie beispielsweise ein Modell mit ID-, Due_Date- und Priority-Feldern der Typen int, bool bzw. datetime definieren, k?nnen Sie Folgendes übergeben:

  • numerische Zeichenfolge als ID
  • ISO-8601, UTC oder Zeichenfolgen der anderen Datumsformate als due_date
  • 'ja'/'nein', 'an'/'aus', 'wahr'/'falsch', 1/0 usw. als Priorit?t
from sensei import APIModel
from datetime import datetime


class Task(APIModel):
    id: int
    due_date: datetime
    priority: bool


task = Task(due_date='2024-10-15T15:30:00',>



<p>The result will be<br>
</p>

<pre class="brush:php;toolbar:false">Task(id=1, due_date=datetime.datetime(2024, 10, 15, 15, 30), priority=True)

Benutzerdefinierte Validierung

Sie k?nnen mithilfe von Validatoren auch eine benutzerdefinierte Validierungslogik in Ihrem Modell definieren. Sie erm?glichen Ihnen die Anwendung komplexerer Validierungsregeln, die mit den integrierten Typen oder Feldeinschr?nkungen nicht einfach ausgedrückt werden k?nnen. Der Validator wird über den Field_validator-Dekorator oder das Field-Objekt definiert. Sie k?nnen einen oder mehrere Feldnamen an field_validator übergeben, um zu bestimmen, welche Felder diesen Validator verwenden, oder ?*“, um den Validator für jedes Feld anzuwenden.

aus der Eingabe von import Any
aus pydantic import Field, field_validator, EmailStr, BaseModel

Klasse User(BaseModel):
    ID: int
    Benutzername: str = Field(pattern=r'^w $')
    E-Mail: EmailStr
    Alter: int = Field(18, ge=14)
    is_active: bool = True
    Rollen: list[str]

    # Definieren Sie den Validator, der ?vor“ der internen Analyse ausgeführt wird
    @field_validator('roles', mode='before')
    def _validate_roles(cls, Wert: Beliebig):
        Rückgabewert.split(',') wenn isinstance(value, str) else value

user = User(id=1, username='john', email='john@example.com', Roles='student,singer')
print(user) #>



<h2>
  
  
  Open-Source-Projekte
</h2>

<p>Es gibt viele Open-Source-Projekte, die von Pydantic unterstützt werden. Entdecken wir die besten davon:</p>

<h3>
  
  
  FastAPI
</h3>

<p>Einer der bekanntesten Anwendungsf?lle von Pydantic ist FastAPI, ein modernes Web-Framework zum Erstellen von APIs mit Python. FastAPI verwendet Pydantic-Modelle ausgiebig für die Validierung des Anforderungstexts, Abfrageparameter und Antwortschemata.</p>

  • Quelle: https://github.com/fastapi/fastapi
  • Dokumente: https://fastapi.tiangolo.com

Pydantic: The end of manual validations! ?

Sensei

W?hrend FastAPI für die Erstellung von APIs konzipiert ist, ist Sensei dafür konzipiert, diese APIs schnell und einfach zu verpacken. Von Sensei betriebene API-Clients stellen sicher, dass Benutzer relevante Datenmodelle erhalten und keine verwirrenden Fehler erhalten.

  • Quelle: https://github.com/CrocoFactory/sensei
  • Dokumente: https://sensei.crocofactory.dev

Pydantic: The end of manual validations! ?

SQLModel und Typer

SQLModel und Typer sind zwei bemerkenswerte Projekte, die von Sebastián Ramírez, dem Erfinder von FastAPI, entwickelt wurden.

SQLModel ist eine Bibliothek zur Optimierung von Datenbankinteraktionen in Python-Anwendungen. SQLModel basiert auf SQLAlchemy und Pydantic und kombiniert die Leistungsf?higkeit eines ORM mit dem Komfort der Datenvalidierung und Serialisierung.

  • Quelle: https://github.com/fastapi/sqlmodel
  • Dokumente: https://sqlmodel.tiangolo.com

Typer ist ein Framework zum Erstellen von Befehlszeilenschnittstellenanwendungen (CLI) mit Python. Es vereinfacht den Prozess, indem es die Typhinweise von Python verwendet, um automatisch benutzerfreundliche CLI-Befehle und Hilfetexte zu generieren.

  • Quelle: https://github.com/fastapi/typer
  • Dokumente: https://typer.tiangolo.com

Das obige ist der detaillierte Inhalt vonPydantic: Das Ende der manuellen Validierungen! ?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Jun 19, 2025 am 01:10 AM

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Jun 14, 2025 am 12:27 AM

Die Standardparameter von Python werden nur einmal in der Definition initialisiert. Wenn ver?nderliche Objekte (z. B. Listen oder W?rterbücher) als Standardparameter verwendet werden, kann ein unerwartetes Verhalten verursacht werden. Wenn Sie beispielsweise eine leere Liste als Standardparameter verwenden, werden mehrere Aufrufe zur Funktion dieselbe Liste wiederverwendet, anstatt jedes Mal eine neue Liste zu generieren. Zu den Problemen, die durch dieses Verhalten verursacht werden, geh?ren: 1. Unerwartete Freigabe von Daten zwischen Funktionsaufrufen; 2. Die Ergebnisse nachfolgender Anrufe werden durch frühere Anrufe beeinflusst, wodurch die Schwierigkeit des Debuggens erh?ht wird. 3. Es verursacht logische Fehler und ist schwer zu erkennen. 4. Es ist leicht, sowohl Anf?nger als auch erfahrene Entwickler zu verwirren. Um Probleme zu vermeiden, besteht die beste Praxis darin, den Standardwert auf keine festzulegen und ein neues Objekt in der Funktion zu erstellen, z.

Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Jun 14, 2025 am 12:31 AM

Pythons Liste, Dictionary und Sammelableitung verbessert die Lesbarkeit der Code und die Schreibeffizienz durch pr?zise Syntax. Sie eignen sich zur Vereinfachung der Iterations- und Konvertierungsvorg?nge, z. B. das Ersetzen von Multi-Line-Schleifen durch Einzelliniencode, um Elementtransformation oder Filterung zu implementieren. 1. Listen Sie die Verst?ndnisse wie [x2forxinRange (10)] direkt quadratische Sequenzen erzeugen; 2. Dictionary-Verst?ndnisse wie {x: x2forxinRange (5)} drücken Sie eindeutig die Kartierung des Schlüsselwerts aus; 3. bedingte Filterung wie [xforxinnumbersifx%2 == 0] macht die Filterlogik intuitiver; 4. Komplexe Bedingungen k?nnen auch eingebettet werden, wie z. überm??ige Verschachtelungs- oder Nebenwirkungsoperationen sollten jedoch vermieden werden, um die Verringerung der Wartbarkeit zu vermeiden. Der rationale Einsatz der Ableitung kann sich verringern

Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Jun 14, 2025 am 12:25 AM

Python arbeitet gut mit anderen Sprachen und Systemen in der Microservice -Architektur zusammen. Der Schlüssel ist, wie jeder Dienst unabh?ngig l?uft und effektiv kommuniziert. 1. Verwendung von Standard -APIs und Kommunikationsprotokollen (wie HTTP, Rest, GRPC) erstellt Python APIs über Frameworks wie Flask und Fastapi und verwendet Anforderungen oder HTTPX, um andere Sprachdienste aufzurufen. 2. Python -Dienste k?nnen mithilfe von Nachrichtenmakler (wie Kafka, Rabbitmq, Redis) zur Realisierung der asynchronen Kommunikation Nachrichten ver?ffentlichen, um andere Sprachverbraucher zu verarbeiten und die Systementkopplung, Skalierbarkeit und Fehlertoleranz zu verbessern. 3.. Erweitern oder einbetten Sie andere Sprachlaufzeiten (wie Jython) durch C/C aus, um die Implementierung zu erreichen

Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Jun 20, 2025 am 12:57 AM

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Jun 19, 2025 am 01:12 AM

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Was sind die aufkommenden Trends oder zukünftigen Richtungen in der Python -Programmiersprache und ihrem ?kosystem? Was sind die aufkommenden Trends oder zukünftigen Richtungen in der Python -Programmiersprache und ihrem ?kosystem? Jun 19, 2025 am 01:09 AM

Zukünftige Trends in Python umfassen Leistungsoptimierung, st?rkere Typ -Eingabeaufforderungen, der Aufstieg alternativer Laufzeiten und das fortgesetzte Wachstum des KI/ML -Feldes. Erstens optimiert CPython weiterhin und verbessert die Leistung durch schnellere Startzeit, Funktionsaufrufoptimierung und vorgeschlagene Ganzzahloperationen. Zweitens sind Typ -Eingabeaufforderungen tief in Sprachen und Toolchains integriert, um die Sicherheit und Entwicklung von Code zu verbessern. Drittens bieten alternative Laufzeiten wie Pyscript und Nuitka neue Funktionen und Leistungsvorteile; Schlie?lich erweitern die Bereiche von KI und Data Science weiter und aufstrebende Bibliotheken f?rdern eine effizientere Entwicklung und Integration. Diese Trends zeigen, dass Python st?ndig an technologische Ver?nderungen anpasst und seine führende Position aufrechterh?lt.

See all articles