


Wie füge ich DataFrames nach Bereichsbedingung in Pandas mithilfe von Numpy Broadcasting zusammen?
Oct 31, 2024 am 09:33 AMDatenrahmen nach Bereichsbedingung in Pandas zusammenführen
Im Bereich der Datenanalyse ist das Kombinieren von Daten aus mehreren Quellen eine h?ufige Aufgabe. Pandas, eine leistungsstarke Python-Bibliothek zur Datenbearbeitung, bietet verschiedene Methoden zum Zusammenführen von Datenrahmen, einschlie?lich einer Bereichsbedingung. Dieser Artikel befasst sich mit diesem speziellen Szenario und stellt eine effiziente L?sung mithilfe von Numpy Broadcasting vor.
Problembeschreibung
Bei zwei Datenrahmen, A und B, besteht das Ziel darin, eine durchzuführen Innerer Join, bei dem Werte in Datenrahmen A in einen bestimmten Bereich fallen, der in Datenrahmen B definiert ist. Traditionell würde dies mithilfe der SQL-Syntax erreicht werden:
<code class="sql">SELECT * FROM A, B WHERE A_value BETWEEN B_low AND B_high</code>
Vorhandene L?sungen
Pandas bietet eine Problemumgehung mithilfe von Dummy-Spalten, dem Zusammenführen in der Dummy-Spalte und dem anschlie?enden Herausfiltern nicht ben?tigter Zeilen. Allerdings ist diese Methode rechenintensiv. Alternativ k?nnte man eine Suchfunktion für jeden A-Wert auf B anwenden, aber dieser Ansatz hat auch Nachteile.
Numpy Broadcasting: Ein pragmatischer Ansatz
Numpy Broadcasting bietet eine elegante und effiziente L?sung. Diese Technik nutzt die Vektorisierung, um Berechnungen für ganze Arrays statt für einzelne Elemente durchzuführen. So erreichen Sie die gewünschte Zusammenführung:
- Extrahieren Sie Werte aus den Datenrahmen A und B.
-
Verwenden Sie Numpy Broadcasting, um eine boolesche Maske zu erstellen:
- A_value >= B_low
- A_value <= B_high
- Verwenden Sie Numpys np.where, um die Indizes zu finden, bei denen die Maske True ist.
- Verketten die entsprechenden Zeilen aus den Datenrahmen A und B basierend auf den identifizierten Indizes.
Dieser Ansatz nutzt Broadcasting, um den Bereichsvergleich für den gesamten A-Datenrahmen durchzuführen, wodurch die Berechnungszeit und -komplexit?t erheblich reduziert wird.
Beispiel
Betrachten Sie die folgenden Datenrahmen:
<code class="python">A = pd.DataFrame(dict( A_id=range(10), A_value=range(5, 105, 10) )) B = pd.DataFrame(dict( B_id=range(5), B_low=[0, 30, 30, 46, 84], B_high=[10, 40, 50, 54, 84] ))</code>
Ausgabe:
A_id A_value B_high B_id B_low 0 0 5 10 0 0 1 3 35 40 1 30 2 3 35 50 2 30 3 4 45 50 2 30
Diese Ausgabe zeigt den Erfolg Zusammenführen der Datenrahmen A und B basierend auf der angegebenen Bereichsbedingung.
Zus?tzliche überlegungen
Um eine Linksverknüpfung durchzuführen, schlie?en Sie die nicht übereinstimmenden Zeilen aus Datenrahmen A in die Ausgabe ein. Dies kann erreicht werden, indem numpys ~np.in1d ??verwendet wird, um die nicht übereinstimmenden Zeilen zu identifizieren und sie an das Ergebnis anzuh?ngen.
Zusammenfassend l?sst sich sagen, dass Numpy Broadcasting einen robusten und effizienten Ansatz zum Zusammenführen von Datenrahmen basierend auf Bereichsbedingungen bietet. Seine Vektorisierungsfunktionen verbessern die Leistung und machen es zu einer idealen L?sung für gro?e Datens?tze.
Das obige ist der detaillierte Inhalt vonWie füge ich DataFrames nach Bereichsbedingung in Pandas mithilfe von Numpy Broadcasting zusammen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Der Schlüssel zum Umgang mit der API -Authentifizierung besteht darin, die Authentifizierungsmethode korrekt zu verstehen und zu verwenden. 1. Apikey ist die einfachste Authentifizierungsmethode, die normalerweise in den Anforderungsheader- oder URL -Parametern platziert ist. 2. BasicAuth verwendet Benutzername und Kennwort für die Basis64 -Codierungsübertragung, die für interne Systeme geeignet ist. 3.. OAuth2 muss das Token zuerst über Client_id und Client_secret erhalten und dann das BearerToken in den Anforderungsheader bringen. V. Kurz gesagt, die Auswahl der entsprechenden Methode gem?? dem Dokument und das sichere Speichern der Schlüsselinformationen ist der Schlüssel.

Assert ist ein Inssertion -Tool, das in Python zum Debuggen verwendet wird, und wirft einen Assertionerror aus, wenn der Zustand nicht erfüllt ist. Die Syntax ist eine geltende Bedingung sowie optionale Fehlerinformationen, die für die interne Logiküberprüfung geeignet sind, z. B. Parameterprüfung, Statusbest?tigung usw., k?nnen jedoch nicht für die Sicherheits- oder Benutzereingabeprüfung verwendet werden und sollten in Verbindung mit klaren Eingabeaufforderungen verwendet werden. Es ist nur zum Hilfsdebuggen in der Entwicklungsphase verfügbar, anstatt die Ausnahmebehandlung zu ersetzen.

TypHintsinpythonsolvetheProblemofAmbiguityAndpotentialbugsindynamicalpedCodeByAllowingDevelopstospecifyexpectypes

Eine gemeinsame Methode, um zwei Listen gleichzeitig in Python zu durchqueren, besteht darin, die Funktion ZIP () zu verwenden, die mehrere Listen in der Reihenfolge und die kürzeste ist. Wenn die Listenl?nge inkonsistent ist, k?nnen Sie iTertools.zip_longest () verwenden, um die l?ngste zu sein und die fehlenden Werte auszufüllen. In Kombination mit Enumerate () k?nnen Sie den Index gleichzeitig erhalten. 1.zip () ist pr?gnant und praktisch, geeignet für die Iteration gepaarte Daten; 2.zip_longest () kann den Standardwert beim Umgang mit inkonsistenten L?ngen einfüllen. 3.Enumerate (ZIP ()) kann w?hrend des Durchlaufens Indizes erhalten und die Bedürfnisse einer Vielzahl komplexer Szenarien erfüllen.

INPYTHON, ITERATORATORSAROBJECTSHATALWOULOUPING ThroughCollections Byimplementing__iter __ () und __Next __ (). 1) IteratorsworkviATheiterProtocol, verwendete __iter __ () toreturn thiteratorand__Next __ () torethentexteemtemuntemuntilstoperationSaised.2) und

Um moderne und effiziente APIs mit Python zu schaffen, wird Fastapi empfohlen. Es basiert auf Eingabeaufforderungen an Standardpython -Typ und kann automatisch Dokumente mit ausgezeichneter Leistung generieren. Nach der Installation von Fastapi und ASGI Server Uvicorn k?nnen Sie Schnittstellencode schreiben. Durch das Definieren von Routen, das Schreiben von Verarbeitungsfunktionen und die Rückgabe von Daten kann schnell APIs erstellt werden. Fastapi unterstützt eine Vielzahl von HTTP -Methoden und bietet automatisch generierte Swaggerui- und Redoc -Dokumentationssysteme. URL -Parameter k?nnen durch Pfaddefinition erfasst werden, w?hrend Abfrageparameter durch Einstellen von Standardwerten für Funktionsparameter implementiert werden k?nnen. Der rationale Einsatz pydantischer Modelle kann dazu beitragen, die Entwicklungseffizienz und Genauigkeit zu verbessern.

Um die API zu testen, müssen Sie Pythons Anfragebibliothek verwenden. In den Schritten werden die Bibliothek installiert, Anfragen gesendet, Antworten überprüfen, Zeitüberschreitungen festlegen und erneut werden. Installieren Sie zun?chst die Bibliothek über PipinstallRequests. Verwenden Sie dann Requests.get () oder Requests.Post () und andere Methoden zum Senden von GET- oder Post -Anfragen. überprüfen Sie dann die Antwort. Fügen Sie schlie?lich Zeitüberschreitungsparameter hinzu, um die Zeitüberschreitungszeit festzulegen, und kombinieren Sie die Wiederholungsbibliothek, um eine automatische Wiederholung zu erreichen, um die Stabilit?t zu verbessern.

In Python sind Variablen, die in einer Funktion definiert sind, lokale Variablen und sind nur innerhalb der Funktion gültig. Extern definiert sind globale Variablen, die überall gelesen werden k?nnen. 1. lokale Variablen werden zerst?rt, wenn die Funktion ausgeführt wird. 2. Die Funktion kann auf globale Variablen zugreifen, kann jedoch nicht direkt ge?ndert werden, sodass das globale Schlüsselwort erforderlich ist. 3. Wenn Sie die ?u?eren Funktionsvariablen in verschachtelten Funktionen ?ndern m?chten, müssen Sie das nichtlokale Schlüsselwort verwenden. 4.. Variablen mit demselben Namen beeinflussen sich in verschiedenen Bereichen nicht gegenseitig; 5. Global muss bei der Modifizierung globaler Variablen deklariert werden, ansonsten werden ungebundener Fehler aufgeworfen. Das Verst?ndnis dieser Regeln hilft bei der Vermeidung von Fehler und zum Schreiben zuverl?ssigerer Funktionen.
